
Extensions to I/O

Tom Clune
SIVO Fortran 2003 Series

March 11, 2008

3/11/08 I/O Enhancements 2

Logistics
 Materials for this series can be found at

http://modelingguru.nasa.gov/clearspace/docs/DOC-1375
 Contains slides and source code examples.
 Latest materials may only be ready at-the-last-minute.

 Please be courteous:
 Remote attendees should use “*6” to toggle the mute. This

will minimize background noise for other attendees.
 Webex - under investigation

3/11/08 I/O Enhancements 3

Outline
 Major extensions

 Stream I/O
 Asynchronous
 Derived Type I/O

 Miscellaneous
 Recursive I/O
 Named constants: ISO_FORTRAN_ENV
 New statements/intrinsics: FLUSH(), NEW_LINE()
 New optional keywords

 IOMSG
 SIGN
 DECIMAL
 ROUND

 Miscellaneous, miscellaneous
 Pitfalls and Best Practices
 Resources

3/11/08 I/O Enhancements 4

Stream I/O
 Stream access is a new method for allowing fine-grained, random

positioning within a file for read/write operations.
 Complements pre-existing DIRECT and SEQUENTIAL access
 Advantages of STREAM access:

 Random access (as with DIRECT)
 Arbitrary record lengths (as with SEQUENTIAL)
 No vendor dependent record separators (as with DIRECT), which enables

both portability and interoperability with other languages
 Disadvantages of STREAM access:

 Presumably poorer performance than both DIRECT and SEQUENTIAL
 Lack of record separators increases risk of inability to read file under small

changes.
 Index for positioning within file might be less natural than those for DIRECT.

 To open a file for stream I/O use ACCESS=‘STREAM’:
OPEN(unit, ACCESS = ‘STREAM’)

 Both formatted and unformatted I/O are supported

3/11/08 I/O Enhancements 5

Stream I/O (cont’d)
 Read/write to stream file use POS keyword to specify position:

READ(unit,POS=n) x,y,z

 File starts at position POS=1 (not zero!)
 Position is specified in “file storage units” - usually bytes

 Useful constant- ISO_FORTRAN_ENV::FILE_STORAGE_SIZE
 If POS keyword is omitted, access continues from last access.

 INQUIRE() uses POS keyword to retrieve current position

INQUIRE(unit, POS=currentPosition, …)

 Restrictions:
 Formatted I/O must use POS obtained from INQUIRE() (or POS=1)
 Vendors may prohibit POS for certain file types

3/11/08 I/O Enhancements 6

 Potential performance enhancement allowing some I/O
operations to be performed in parallel with other computations.
 Multiple I/O operations may progress simultaneously.

 Note that the standard allows vendors to implement with
completely synchronous operations.

Asynchronous I/O

Other
 workI/O

Start
Asynch

I/O

End
Asynch

I/O

other work

I/O
Start

Asynch
I/O

End
Asynch

I/O

I/O

more work

I/O More
 work

3/11/08 I/O Enhancements 7

Asynchronous I/O cont’d
 To open a file for asynchronous operations, the new

optional keyword ASYNCHRONOUS is used
open(unit, ‘file’, ASYNCHRONOUS=‘yes’, …)

 An asynchronous read/write operation is initiated with the
same keyword:

write(unit,ASYNCHRONOUS=‘yes’) …

 Data items in the I/O list are referred to as ‘affectors’.
 Operation itself is referred to as ‘pending’.
 Note that the default is ASYNCHRONOUS=‘no’ even if the file was

opened with ‘yes’.
 An optional keyword, ID, can be used to return a handle for

later use in identifying specific pending operations:
integer :: asyncID
read(unit,…,ID=asyncID)

3/11/08 I/O Enhancements 8

Asynchronous I/O
 Pending operations are terminated by any “wait” operation

 Explicit wait statement: WAIT(unit)
 Implicit wait via CLOSE(), INQUIRE(), or file positioning statement

 New optional keyword PENDING for INQUIRE() statement
 Returns logical scalar indicating whether operation has completed.

logical :: isPending
INQUIRE(unit, PENDING=isPending)
if (isPending) …

 Both WAIT() and INQUIRE() statements accept the optional keyword
“ID” to specify specific I/O operations:

write(unitA, ID=idA) bigArrayA
write(unitB, ID=idB) smallArrayB
INQUIRE(unit, ID=idA, PENDING=isPending) !1st write
WAIT(unit,ID=idB) ! Only wait for second write()

3/11/08 I/O Enhancements 9

Asynchronous I/O cont’d
 Certain restrictions required to guarantee consistency during pending

operations:
 Output affectors may not be modified during pending operations
 Input affectors may not be referenced at all during pending operations

 Affectors may be declared with ASYNCHRONOUS attribute

REAL, ASYNCHRONOUS :: array(IM,JM,LM)
REAL :: otherArray(N)
ASYNCHRONOUS :: otherArray

 Warns a compiler that certain optimizations may be prohibited
 Automatic for affectors in the scoping unit.
 Needs to be explicit for any variable which is an affector in another scoping

unit.
 Dummy variables and variables accessed by host association.
 Attribute can be specified without redeclaring variable:

ASYNCHRONOUS :: varFromOtherModule

3/11/08 I/O Enhancements 10

Derived Type I/O
 Standard allows for user-defined I/O of derived type

 When derived type is encountered in an I/O list, a Fortran
subroutine is called.
 Reads some data and constructs a value of the derived type or
 Writes some data from a derived type into a file

 Support for both FORMATTED and UNFORMATTED
 Formatted I/O edit descriptor an extra string and integer array that

can be used to control operations
 Example FORMATTED edit descriptor:

DT 'linked-list' (10, -4, 2)

 If string is omitted it is treated as string of length 0
 If Array is omitted, it is treated as an array of size 0

3/11/08 I/O Enhancements 11

Derived Type I/O (cont’d)
 Two mechanisms are provided to associate a

subroutine with I/O for a derived type
1. So-called type-bound procedures - deferred until OO
2. Interface block

INTERFACE READ(FORMATTED)
module procedure readType

END INTERFACE

3/11/08 I/O Enhancements 12

Derived Type I/O (cont’d)
 Derived type I/O subroutines must conform to a very specific

interface:
SUBROUTINE formatted_io (dtv,unit,iotype,v_list,iostat,iomsg)
SUBROUTINE unformatted_io(dtv,unit, iostat,iomsg)

 DTV is a scalar of the derived type
 Intent(IN) for write operations
 Intent(INOUT) for read operations

 UNIT is a default integer of intent(IN)
 Negative for internal file

 IOSTAT is an intent(out) default integer
 Must be given positive value on error
 Enf-of-file or end-of-record must be set to IOSTAT_END or

IOSTAT_EOR respectively
 IOMSG character(*), intent(inout)

 If IOSTAT is positive, IOMSG must be given an explanatory
message.

3/11/08 I/O Enhancements 13

Derived Type I/O (cont’d)
 Formatted I/O has two additional mandatory

arguments.
 These provide additional flexibility for altering format of I/O

depending on context
 IOTYPE is character(*), intent(in)

 Value depends on context of actual I/O operation
 ’LISTDIRECTED’
 ’NAMELIST’
 ’DT’//string where string is from the DT edit descriptor.

 VLIST is an intent(in), rank-1 integer array of assumed size
from the edit descriptor

3/11/08 I/O Enhancements 14

Derived Type I/O (cont’d)
 Some caveats:

 Input/Output operations in these subroutines are limited to the
specified unit and the specified direction (read/write).
 However, operations to internal files are permitted

 The file position on entry is treated as a left tab limit and there
is no record termination on return.

 Derived type I/O is not available in combination with
asynchronous input/output.

3/11/08 I/O Enhancements 15

Miscellaneous
 Recursive I/O

 Named constants: ISO_FORTRAN_ENV
 New statements/intrinsics: FLUSH(), NEW_LINE()
 New optional keywords

 IOMSG
 SIGN
 DECIMAL
 ROUND

 Miscellaneous, miscellaneous

3/11/08 I/O Enhancements 16

Recursive I/O
 Previous versions of the standard prohibited all

recursive I/O operations due to ambiguity about
expected results

 New standard relaxes these restrictions in the special
case of internal files:

function toString(n) result(string)
 integer, intent(in) :: n
 character(len=3) :: string
 write(string,’(i3.3)’) n
end function toString
…
write(unit,*) toString(i), toString(j), toString(k)

3/11/08 I/O Enhancements 17

ISO_FORTRAN_ENV
 Intrinsic module for named I/O constants - portability
 Standard units - default integer scalars:

 INPUT_UNIT - unit ‘*’ in READ statement
 OUTPUT_UNIT - unit ‘*’ in WRITE statement
 ERROR_UNIT - used for error reporting

 Vendor dependent integer scalars with values that are assigned to
IOSTAT= if an end-of-file or end-of-record condition
 IOSTAT_END
 IOSTAT_EOR

 Size in bits for numeric, character and file storage:
 Supports portability
 NUMERIC_STORAGE_SIZE
 CHARACTER_STORAGE_SIZE
 FILE_STORAGE_SIZE

3/11/08 I/O Enhancements 18

New statement and intrinsic
 New statements

 WAIT() - saw this in asynchronous I/O
 FLUSH(unit)

 Makes written data available to other processes
 Makes data from other processes available to read
 With ADVANCE=’NO’ or stream access, permits access to

keyboard input character-by-character
 New Intrinsic

 NEW_LINE(A)
 Function which returns a ‘newline’ character
 ‘A’ is of type character and specifies the KIND of the result

3/11/08 I/O Enhancements 19

Miscellaneous Keywords
 Informative error messages: IOMSG

 Optional keyword to any input/output statement
 Identifies a scalar variable of default character into which the

vendor places a message if an error is encountered.
 Actual argument is unchanged if there is no error
 Actual message is vendor dependent.

 Optional ‘+’ in formatted numeric output: SIGN
 Sets file default in OPEN()
 Override in WRITE() statement with SS, SP and S edit

descriptors
 Allowed values: SUPPRESS,PLUS, & PROCESSOR_DEFINED

3/11/08 I/O Enhancements 20

Keywords (cont’d)
 Portability with Europeans: DECIMAL

 Controls the character that separates the parts of a decimal
number in formatted I/O

 Default set with open()

open(unit, …,DECIMAL=<specifier>,…)

 Allowed values are COMMA or POINT
 Can override default for file in read/write statements with ‘DC’

and ‘DP’ edit descriptors.

3/11/08 I/O Enhancements 21

Keywords (cont’d)
 Rounding during formatted input/output: ROUND

 Set default in OPEN() statement

open(unit, …, ROUND=<specifier>,…)

 Permitted values:
 UP
 DOWN
 ZERO
 Closest value:

 NEAREST - processor dependent if equidistant
 COMPATIBLE - away from zero if equidistant

 PROCESSOR_DEFINED
 Can be locally overridden in READ/WRITE statements by RU, RD,

RZ, RN, RC, and RP edit descriptors

3/11/08 I/O Enhancements 22

Miscellaneous miscellaneous
 Input and output of IEEE infinities and NaNs

 Unconstrained in F95 and earlier
 Uses edit descriptors for reals - only width ‘W’ is taken into account
 Output forms are

1. -Inf or -Infinity for minus infinity
2. Inf, +Inf, Infinity, or +Infinity for plus infinity
3. NaN, optionally followed by non-blank characters in parentheses

 Each is right justified in its field.
 Any kind of integer is permitted for I/O keywords

 Default integers are just too small for some applications.
 Comma after ‘P’ edit descriptor is optional when followed by a

repeat specifier
 E.g. 1P2E12.4 is permitted

3/11/08 I/O Enhancements 23

Pitfalls and Best Practices
 ASYNCHRONOUS

 Watch for race conditions
 Declare with ASYNCHRONOUS in other scoping units

 STREAM
 Use INQUIRE to obtain POS in file (avoid formulae)
 File storage size from ISO_FORTRAN_ENV

 Use IOMSG to obtain informative error messages
 Use named constants when possible

3/11/08 I/O Enhancements 24

Supported Features

noyesyesyesyesyesIntrinsic NEW_LINE

yes

yes

no

Gfortran
20070810

yes

no

no

Ifort
9.1.049

Derived Type

yesyesyesnoyesRecursive

noyesyesyesyesStream

nonoyesnoyesAsynchronous

G95
0.90

pgi
6.2.4

Xlf
11.0

NAG
5.1

Ifort 10.1

Feel free to contribute if you have
access to other compilers not
mentioned!

Compiler

3/11/08 I/O Enhancements 25

Resources
 SIVO Fortran 2003 series:

 https://modelingguru.nasa.gov/clearspace/docs/DOC-1390
 Questions to Modeling Guru: https://modelingguru.nasa.gov
 SIVO code examples on Modeling Guru
 Fortran 2003 standard:

http://www.open-std.org/jtc1/sc22/open/n3661.pdf
 John Reid summary:

 ftp://ftp.nag.co.uk/sc22wg5/N1551-N1600/N1579.pdf
 ftp://ftp.nag.co.uk/sc22wg5/N1551-N1600/N1579.ps.gz

 Newsgroups
 http://groups.google.com/group/comp.lang.fortran

3/11/08 I/O Enhancements 26

Next Fortran 2003 Session
 Miscellaneous
 Tom Clune will present
 Tuesday, March 25, 2008
 B28-E210

